UV-Meter

Hand-held UV-Meter / UV-LED-Meter

System-Features
• PTB-traceable results
• Wide range of sensors

Optional
• Data saving
• Two-channel measuring
• Control and evaluation of measurement data via PC or PLC
• UV-LED measuring head
The hand-held Hönlé UV-METER measures exact data that is traceable to the German standard PTB (Physikalisch Technische Bundesanstalt). The unit is available as a basic or high-end version. Different sensors cover wavelengths from 230 nm to 550 nm - UVC, UVB, UVA and VIS.

The UV-METER with its wide range of interchangeable sensors makes it suitable for different manufacturing processes. Sensors are available both for UV point sources and surface irradiation equipment.

Practical handling

All features can be selected via an eight-button touch panel. The UV-METER has automatic sensor recognition.

Remote switching via a PLC can activate measurement. The docking station of the high-end version also recharges the batteries.

The data indicator can display various values (mW/cm², W/cm² or W/m²). Two-channel measuring for different wavelength ranges can be recorded at the same time.

Application ranges

- for UV curing of inks and coatings
- for UV curing of adhesives and potting compounds
- for surface sterilisation via UVC radiation

Documented measurement data

With the measured data storage it is possible to record a test series of intensity and dose. In addition, the minimum, maximum and average intensity is retained during measuring activity. The integrated real-time clock in the UV-METER ensures precise timed sampling of measured results. The docking station has a RS232-interface for analysis of measured values via PC or PLC.

Advantages

- cost saving – a single UV meter for all applications
- measuring accuracy – the UV-METER is traceable to PTB standards
- process reliability – constant control of UV-intensity ensures a consistent quality of UV-curing and -drying
- certificated – reliable calibration with certificate

Types of sensors

<table>
<thead>
<tr>
<th>Surface sensors</th>
<th>Spectrum</th>
<th>Maximum Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVC (230 nm – 285 nm)</td>
<td>2 W/cm²</td>
<td></td>
</tr>
<tr>
<td>UVB (290 nm – 330 nm)</td>
<td>2 W/cm²</td>
<td></td>
</tr>
<tr>
<td>UVA (330 nm – 400 nm)</td>
<td>5 W/cm²</td>
<td></td>
</tr>
<tr>
<td>VIS (380 nm – 550 nm)</td>
<td>2 W/cm²</td>
<td></td>
</tr>
<tr>
<td>LED (265 nm – 485 nm)</td>
<td>20 W/cm²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Light guide and quartz rod sensors</th>
<th>Spectrum</th>
<th>Maximum Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVC (230 nm – 285 nm)</td>
<td>2 W/cm²</td>
<td></td>
</tr>
<tr>
<td>Light guide sensor for UVA (330 nm – 400 nm)</td>
<td>20 W/cm²</td>
<td></td>
</tr>
<tr>
<td>Quartz rod sensor for UVA (330 nm – 400 nm)</td>
<td>5 W/cm²</td>
<td></td>
</tr>
<tr>
<td>VIS (380 nm – 550 nm)</td>
<td>2 W/cm²</td>
<td></td>
</tr>
<tr>
<td>Light guide sensor for LED (265 nm – 485 nm)</td>
<td>20 W/cm²</td>
<td></td>
</tr>
</tbody>
</table>

Sensors with lower intensity range are also available. The difference between the high-end and the basic version is that the basic sensor can be used only to measure single channels. The basic version has neither any data storage nor a docking station.